black and white bed linen

Research Literature

A curated collection of top Pisum sativum resources and insights

References

Genome Sequencing & Assembly
  1. Kreplak, J., et al. (2019). A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 51(9), 1411-1422.
    DOI: 10.1038/s41588-019-0480-1

  2. Yang, T., et al. (2022). Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nature Genetics, 54(10), 1553-1563.
    DOI: 10.1038/s41588-022-01172-2

  3. Tayeh, N., et al. (2015). Development of two major resources for pea genomics: the GenoPea 13.2K SNP Array and a high-density, high-resolution consensus genetic map. The Plant Journal, 84(6), 1257-1273.
    DOI: 10.1111/tpj.13070

SNP Markers & Genomic Selection
  1. Burstin, J., et al. (2015). Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea. Plant Physiology, 169(4), 2652-2669.
    DOI: 10.1104/pp.15.01110

  2. Gali, K.K., et al. (2019). Genome-wide association mapping for agronomic and seed quality traits of field pea (Pisum sativum L.). Frontiers in Plant Science, 10, 1538.
    DOI: 10.3389/fpls.2019.01538

  3. Pandey, A.K., et al. (2021). Genome-wide association studies for 50 agronomic traits in pea (Pisum sativum L.) using RAD-seq derived SNP markers. Scientific Reports, 11, 18121.
    DOI: 10.1038/s41598-021-97604-w

Disease Resistance Genetics
  1. Barilli, E., et al. (2018). A high-density integrated linkage map for Pisum sativum L. based on SNP markers. BMC Genomics, 19, 955.
    DOI: 10.1186/s12864-018-5336-z

  2. Fondevilla, S., et al. (2012). Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology. BMC Genomics, 13, 28.
    DOI: 10.1186/1471-2164-13-28

  3. Rispail, N., et al. (2023). Genome-wide association study identifies novel loci involved in resistance to powdery mildew in pea. Theoretical and Applied Genetics, 136, 45.
    DOI: 10.1007/s00122-023-04241-0

  4. Sudheesh, S., et al. (2015). SNP-based linkage mapping for validation of QTLs for resistance to Ascochyta blight in lentil. Frontiers in Plant Science, 6, 1604.
    DOI: 10.3389/fpls.2015.01604

QTL Mapping & Trait Analysis
  1. Klein, A., et al. (2020). Meta-analysis of QTL reveals the genetic control of yield-related traits and seed protein content in pea. Scientific Reports, 10, 15925.
    DOI: 10.1038/s41598-020-72548-9

  2. Huang, S., et al. (2017). Identification of QTLs for plant height and seed weight in two F2 populations of pea. Molecular Breeding, 37, 130.
    DOI: 10.1007/s11032-017-0727-4

  3. Gawłowska, M., et al. (2021). Identification of QTLs controlling seed coat color and oligosaccharide content in field pea (Pisum sativum L.). International Journal of Molecular Sciences, 22(16), 8678.
    DOI: 10.3390/ijms22168678

Breeding & Variety Development
  1. Smýkal, P., et al. (2018). Genomic diversity and macroecology of the crop wild relatives of domesticated pea. Scientific Reports, 8, 17384.
    DOI: 10.1038/s41598-018-35687-8

  2. Warkentin, T.D., et al. (2015). Pea breeding: Progress, challenges and opportunities. Crop Science, 55(6), 2463-2475.
    DOI: 10.2135/cropsci2014.12.0848

  3. Annicchiarico, P., et al. (2019). Accuracy of genomic selection for alfalfa biomass yield in eight contrasting environments. Plant Genome, 12(1), 180087.
    DOI: 10.3835/plantgenome2018.12.0087

Climate Adaptation & Stress Tolerance
  1. Mohapatra, C., et al. (2020). Identification of QTLs and candidate genes for drought tolerance in pea (Pisum sativum L.). Plant Breeding, 139(5), 968-979.
    DOI: 10.1111/pbr.12852

  2. Iglesias-García, R., et al. (2015). Responses to drought stress in Pisum sativum L.: Differential expression of structural defense genes. Plant Physiology and Biochemistry, 92, 47-56.
    DOI: 10.1016/j.plaphy.2015.04.005

  3. Tafesse, E.G., et al. (2020). Genome-wide association mapping of frost tolerance in field pea. The Plant Genome, 13(3), e20046.
    DOI: 10.1002/tpg2.20046

Protein & Nutritional Quality
  1. Jha, A.B., et al. (2022). Genetic diversity and population structure of pea (Pisum sativum L.) accessions for marker-trait association of lipid content. Crop Science, 62(2), 852-867.
    DOI: 10.1002/csc2.20679

  2. Krajewski, P., et al. (2012). QTL for yield components and protein content: A multienvironment study of two pea (Pisum sativum L.) populations. Euphytica, 183, 323-336.
    DOI: 10.1007/s10681-011-0472-4

  3. Tar'an, B., et al. (2004). Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat map. Genome, 47(4), 657-666.
    DOI: 10.1139/g04-016

Root Architecture & Nitrogen Fixation
  1. Bourion, V., et al. (2018). Co-localization of QTLs for pod fiber content and pod wall proportion in pea (Pisum sativum L.). Theoretical and Applied Genetics, 131, 2795-2810.
    DOI: 10.1007/s00122-018-3190-7

  2. Desgroux, A., et al. (2016). Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC Genomics, 17, 124.
    DOI: 10.1186/s12864-016-2429-4

  3. Aubert, G., et al. (2006). Functional mapping in pea, as an aid to the candidate gene approach and for investigating the synteny with model species. Theoretical and Applied Genetics, 112, 1024-1041.
    DOI: 10.1007/s00122-005-0205-y

Flowering Time & Development
  1. Weller, J.L., et al. (2012). A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proceedings of the National Academy of Sciences, 109(51), 21158-21163.
    DOI: 10.1073/pnas.1207943110

  2. Liew, L.C., et al. (2014). DIE NEUTRALIS and LATE BLOOMER 1 contribute to regulation of the pea circadian clock. The Plant Cell, 26(10), 3754-3766.
    DOI: 10.1105/tpc.114.128688

Genomic Resources & Methodology
  1. Beji, S., et al. (2020). Genome-wide association study identifies genomic regions associated with key seed quality traits in pea. The Plant Genome, 13(3), e20062.
    DOI: 10.1002/tpg2.20062

  2. Holdsworth, W.L., et al. (2022). A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection. Horticulture Research, 9, uhab011.
    DOI: 10.1093/hr/uhab011

  3. Coyne, C.J., et al. (2020). The USDA-ARS pea germplasm collection: Current status and future directions. Crop Science, 60(2), 544-558.
    DOI: 10.1002/csc2.20164

Review Papers & Meta-Analyses
  • Smýkal, P., et al. (2012). Pea (Pisum sativum L.) in the genomic era. Agronomy, 2(2), 74-115.
    DOI: 10.3390/agronomy2020074

  • Rubiales, D., et al. (2015). Achievements and challenges in legume breeding for pest and disease resistance. Critical Reviews in Plant Sciences, 34(1-3), 195-236.
    DOI: 10.1080/07352689.2014.898445

Practical Applications & Field Studies
Bioinformatics Tools & Databases
  • Alves-Carvalho, S., et al. (2015). Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insight into root nodulation in this species. The Plant Journal, 84(1), 1-19.
    DOI: 10.1111/tpj.12967